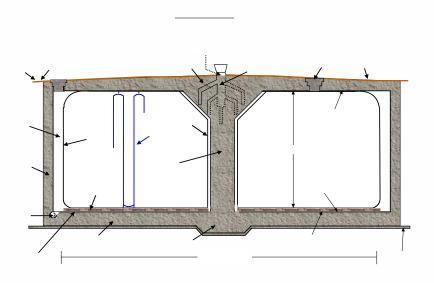


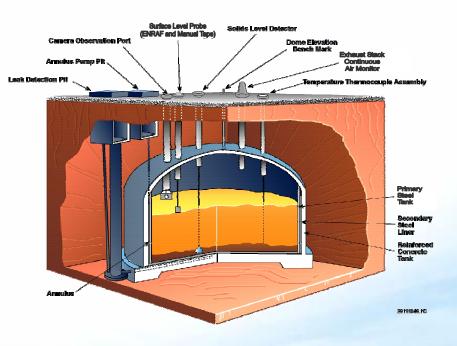
High-Level Liquid Waste Tank Integrity Workshop – 2008

Karthik Subramanian Bruce Wiersma November 2008

High Level Waste Corporate Board Meeting

karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov


Acknowledgements


- Bruce Wiersma (SRNL)
- Kayle Boomer (Hanford)
- Michael T. Terry (Facilitator)
- SRS Liquid Waste Organization
- Hanford Tank Farms
- DOE-EM

Background

- High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal
- Maintaining structural integrity (SI) of the tanks is a critical component of operations

Tank Integrity Workshop - 2008

- Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission
- Investigate on-going waste tank integrity and life extension activities
- Identify opportunities and recommend solutions to improve these areas at the Savannah River and Hanford sites
- Basis
 - Integrate SI programs across DOE complex
 - Increase confidence in continued safe tank farm operations
- Establish groundwork for collaborative efforts
 - Develop action plans
 - Improve networking

Attendees and Agenda

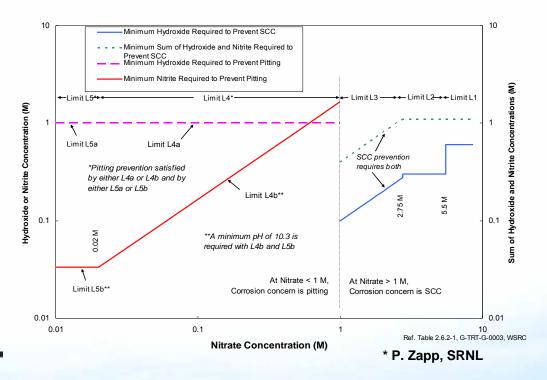
- Savannah River National Laboratory (SRNL)
- Savannah River Site Liquid Waste Operations (SRS-LWO)
- CH2M Hill Hanford
- DOE SR/ORP/EM-21
- ARES Corporation
- PNNL
- CC Technologies
- DNFSB
- Academia

- Series of technical presentations to update the participants on the status of tank structural integrity related activities
 - Overview
 - Corrosion
 - Inspection & Monitoring
 - Structural Analyses
- Facilitator led working sessions

Facilitated Sessions

- Three small groups were set up to determine enablers, inhibitors, barriers, and solutions
- Technical
 - Intimate knowledge of safe operations/processes including all key elements of SI
 - Need for improved understanding of corrosion chemistry/controls for evolving conditions, inspection methodologies
- Programmatic
 - Sound technical team with consistent open communication with stakeholders
 - Need for improved communication/integration of overall mission goals

Barriers and Solutions


Year 2018 Vision: "We have a complete technical basis for optimizing risk reduction for safe extension of mission duration of high level waste tanks at Hanford and SRS"

- Improve understanding of the corrosion mechanisms and optimization of corrosion controls
- Improve understanding of in-tank conditions
- Improve non-destructive evaluation (NDE) techniques for primary/secondary tank wall and concrete
- Develop tank integrity roadmap and execution plan including knowledge retention plan

Improve Knowledge of Corrosion Mechanisms & Controls Optimization

- Critical review of existing literature
- Establish chemistry regimes and define controls
- Determine vapor space and liquid/air interfacial chemistries potentially leading to corrosion
- In-tank monitoring to validate laboratory results

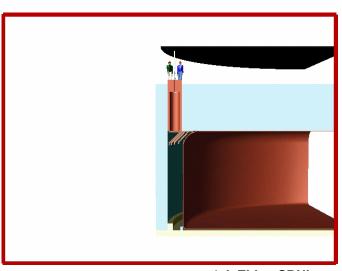
Champions

- Bruce Wiersma (SRNL)
- Rich Wyrwas (Hanford)

Improve Knowledge of In-Tank Conditions

- New sampling technology/technical bases
- Corrosion monitoring
- Iterative modeling/experiments for analyses
- Identify bounding tank chemistries
- Optimize corrosion probes

*V. Anda, Ares Corporation


Champions

- Philip Zapp (SRNL)
- Vanessa Anda (Ares Corp)
- John Beavers (CC Technologies)

Improve NDE Techniques

- Concrete NDE
- Statistical analyses to validate data
- Workshop to review ultrasonic testing data/inspection programs
- Comprehensive review of NDE technologies for deployment

* J. Elder, SRNL

Champions

- Jim Elder (SRNL)
- Jason Engeman (Hanford)

Develop Tank Integrity Roadmap

- Roadmap to include key elements of SI programs at SRS and Hanford
- Provide technical and programmatic direction to achieve vision
- Integrate programs as appropriate

Champions

- Karthik Subramanian (SRNL)
- Chris Burke and Kayle Boomer (Hanford)

CORROSION CHEMISTRY

- Vapor Space and Liquid/Air Interface Corrosion
- Evolution of chemistry control to support sitespecific goals

INSPECTION & MONITORING

- Corrosion probe optimization
- Volumetric inspection of DST tank steel liner
- Inspection of concrete

STRUCTURAL ANALYSES

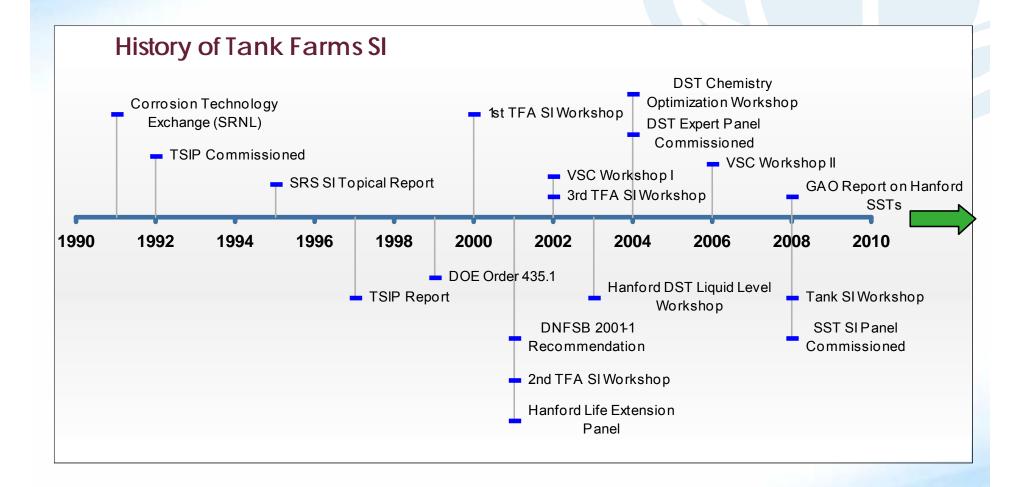
- Fracture mechanics based analyses for flawed tanks
- Seismic analyses

Path Forward

Path Forward	Status
Proceedings of Workshop	"Proceedings of the High-Level Liquid Waste Integrity Workshop – 2008, WSRC-STI-2008-00340, July 2008
Develop Roadmap	Roadmap development underway
Conduct a Review Meeting	Review meeting to be in January 2009

Integrate, Integrate, Integrate

- SI programs are SRS and Hanford are primarily similar
- Site specific regulatory drivers require some fundamental variances in SI programs
- The technological elements of the programs can be integrated


Questions

Backup

SI Roadmap Development

•All HFFACO milestones have been met, permitting underway

Comparison of Programs

Element	Savannah River Program	Savannah River Basis/Driver	Hanford Program	Hanford Basis/Driver
Aging Mechanism				
Steel Wall	Pitting - L/A Interface	WSRC-TR-96-0076	Pitting - L/A Interface	WHC-SD-WM-ER414
Concrete	No degradation identified	WSRC-TR-96-0076	Degradation Evaluated	RPP-RPT-28968
Corrosion Mitigation				
Supernate	Sample - Quarterly to 4 years	WSRC-TR-2002-00327	Sample - 10 years	RPP-RPT-7795
Solids	Same chemistry - supernate	WSRC-TR-96-0076	Sample - 10 years	RPP-RPT-7795
Chemistry Control	See Next Sheet	See Next Sheet	See Next Sheet	See Next Sheet
<u>Leak Tightness</u>	Annulus Leak Detection	FFA	Annulus Leak Detection	HFFACO
<u>Inspections</u>				
Visual	All DST, once per year	FFA	All DSTs, 5-7 years	HFFACO
NDE - Wall Thickness	1 strip, (0.27%)	TSIP	4 strips (2.1%)	HFFACO
NDE - Vertical Welds	1 vertical strip	TSIP	4 vertical strips	HFFACO
NDE - Horizontal Welds	5% (rev 3)	TSIP	8.50%	HFFACO
NDE - Liquid/Air Interface	1 tank (5%) rev 3	TSIP	6 tanks (8.5%)	HFFACO
NDE - Knuckle	5 tanks (5%) rev 3	TSIP	TSIP 6 tanks (8.5%)	
NDE - Primary Floor	6 tanks (10' per tank) rev 3	TSIP	Discontinued	HFFACO —
NDE - Secondary Wall	All tanks	TSIP	3 tanks	TSIP
NDE - Secondary Floor	All tanks	TSIP	3 tanks	TSIP
Corrosion Monitoring				
Liquid	Not Performed	WSRC-TR-96-0076	Developing Program	Expert Panel
Liquid/Air Interface	Not Performed	WSRC-TR-96-0076	Developing Program	Expert Panel
Vapor Space	Developing Program	SRNL	Developing Program	Expert Panel

Comparison of Programs: Chemistry Control

Applicability	Parameter	SRS [Minimum Inhibitor M]	Hanford [M]	
5.5 < [NO -1 < 9.5	[OH-]	0.6	Not Allowed	
$5.5 \le [NO_3^-] \le 8.5$	[OH-] + [NO ₂ -]	1.1	Not Allowed	
2.75 (3.0 Hanford) ≤ [NO ₃ -] < 5.5	[OH·]	0.3	0.3 but not > 10 for Waste Temp < 100°C 0.3 but not > 4 for Waste Temp ≥ 100°C	
\ 5.5	[OH-] + [NO ₂ -]	1.1	1.2	
1.0 ≤ [NO ₃ -] ≤ 2.75 (3.0 Hanford)	[OH ⁻]	0.1*[NO ₃ -]	$0.1*[NO_3^-]$ but not >10 for Waste Temp < 100° C $0.1*[NO_3^-]$ but not >4 for Waste Temp > 100° C	
	[OH-] + [NO ₂ -]	0.4*[NO ₃ -]	> 0.4*[NO ₃ -]	
$[NO_3^-] < 1.0 \text{ (Hanford)}$ $0.02 \le [NO_3^-] < 1.0 \text{ (SRS)}$	[OH ⁻]	1.0M pH > 10.3	pH > 12 but not > 8M for Waste Temp < 75°C pH > 12 but not > 5M for Waste Temp < 100°C pH > 12 but not > 4M for Waste Temp > 100°C	
	[NO ₂ -]	n/a AND 1.66* [NO ₃ -] for Temp ≤ 40 °C plus limits based on chloride and sulfate	0.01 but not > 5.5	
	[OH-] + [NO ₂ -]		[NO ₃ ⁻] < 2.5 * ([OH ⁻] + [NO ₂ ⁻])	
	[OH-]	1.0M pH > 10.3		
[NO ₃ -] < 0.02	[NO ₂ -]	n/a AND 0.033 Temp ≤ 40 °C plus limits based on chloride and sulfate	None defined	

Workshop Presentations

Overview of Sites

Introductory Remarks • DOE-SR • DOE-ORP • WSRC-Liquid Waste • CH2M HILL - Operations	M. Mikolanis C. K. Liu R. Salizzoni R. Tucker
Opening Remarks - Environmental Management	S. Krahn
Savannah River Site Tank History and Integrity Assessment	B. Wiersma
Hanford Tank History and Integrity Assessment	K. Boomer

Structural Analysis

Seismic and Thermal Operating Load Analyses at Hanford	M. Rinker
Seismic Analysis at the Savannah River Site	N. Kennedy
Structural Analysis at the Savannah River Site – Residual Stresses	P-S. Lam
Structural Analysis at the Savannah River Site – Fracture Mechanics	Y. J. Chao

Workshop Presentations

Corrosion

Corrosion Work at the Savannah River Site – Pitting Studies	P. Zapp E. Hoffman
Corrosion Work at the Savannah River Site – Stress Corrosion Cracking	B. Wiersma
Vapor Space Corrosion Investigations at the Savannah River Site	K. Subramanian
Hanford Corrosion Testing at CC Technologies, Inc.	C. Scott

Inspection and Monitoring

Recent Advancements in Ultrasonic Testing at the Savannah River Site	J. Elder
Latest Hanford Corrosion Probe and Preliminary Data	V. Anda

